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Summary. This article studies the dependence on the cutoff scheme of ab initio 
crystal orbital calculations with no long-range correction. We have thoroughly 
studied the Namur cutoff and cell-wise cutoff schemes through calculations of 
polyethylene and LiH chains. The Namur cutoff gives the fastest energy conver- 
gence with respect to the number of neighbors (No). The energy convergence 
behavior with respect to No depends on the basis set. The Namur cutoff shows the 
fastest convergence with the STO-3G basis set, intermediate convergence with the 
MINI basis set, and the slowest convergence with the (7s4p/3s) basis set. The 
cell-wise cutoff shows exactly the reverse order of the Namur cutoff. The Namur 
cutoff destroys the translational symmetry. Both the Namur cutoff and cell-wise 
cutoff schemes introduce slight asymmetry on the two equivalent C-C bonds of 
polyethylene when calculating with a CzH 4 unit cell. The asymmetry with the 
Namur cutoff can be made to disappear by increasing No a little. The calculations 
on two different unit-cell structures of trans-polyacetylene show the effect of the 
cutoff scheme on the total energy. Only the symmetric cutoff energies are the same. 
Disagreement related to the Namur cutoff disappears at No = 20, however, that 
related to the cell-wise and modified symmetric cutoff schemes remains at No ~< 20. 
The optimized geometry and vibrational frequency are not as sensitive to the cutoff 
method except with the symmetric cutoff. A compilation of all results shows that 
the Namur cutoff is the superior cutoff scheme when calculating the insulator using 
the minimal basis set, especially the STO-3G basis set. 
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1 Introduction 

Recent progress in ab initio crystal orbital calculations is closely related to the 
development of one-dimensional organic semiconductors, which typically employ 
polyacetylene chains. Those polymers have attracted much attention due to their 
intriguing physical properties such as electric conductivity. Along with the develop- 
ment of experimental works, many theoretical works using the ab initio crystal 
orbital method have been published. Because polyacetylene is a very simple 
polymer, it is suitable for tests involving such large-scale calculations. 

These works have clarified the problem with actual applications of crystal 
orbital calculations. The most significant one is the disagreement in ab initio results 
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among the works by Kertrsz et al. [1-3], Karpfen and H611er [4], Suhai [5], 
Dovesi [6], and Teramae et al. [7], works that employed the same STO-3G basis 
set. The same situation arose with the calculation of polyethylene chains. There was 
disgreement in the optimized geometry between the works by Karpfen, and 
Teramae et al. [8]. This disagreement is caused by a difference in the method 
cutting off truncations of the electron-electron, electron-nucleus, and nu- 
cleus-nucleus interactions. 

In a previous paper [9], we proposed a modification to our calculations which 
greatly diminished the disagreement between our works and the others. The con- 
vergence of absolute energy values with respect to the number of neighboring cells 
included in the calculation (hereafter referred to as convergence), however, was found to 
be very slow. Even after summations of the nearest 50 neighboring cells, the total energy 
convergence is still remained within 10-3 a.u. for STO-3G level calculations. 

On the other hand, Delhalle et al. [-10] proposed the multipole expansion technique 
as an approximation for long-range interactions to overcome this slow convergence. The 
long-range correction is performed within the space where exact calculation of the 
electron-electron, electron-nucleus, and nucleus-nucleus interactions are neglect- 
ed. Their test calculation on a metallic LiH chain showed very fast convergence. 
Summation of only the three nearest neighbors was necessary to ensure conver- 
gence within 10 -5 a.u. The success of Andr6 et al. [11] demonstrated that poly- 
ethylene and LiH chain energy converges within 10-6 a.u. using the same method. 
Karpfen and Beyer [13] also showed that long-range correction was necessary with 
cell-wise cutoff to obtain well converged energy values for the polyethylene chain. 

It has not been confirmed, however, that long-range correction is really neces- 
sary to obtain well converged energy. Furthermore, it has not been confirmed 
whether or not the converged energies with and without long-range correction are 
identical, except for the metallic LiH chain mentioned above. To answer these 
questions, we implemented the cell-wise and Namur cutoff schemes without long- 
range correction in our crystal orbital program system, in addition to the sym- 
metric and the modified symmetric cutoff schemes which have been used in our 
previous works. The purposes of the present work are to study the convergence 
behavior of energy with respect to the number of neighbors as it relates to these two 
cutoff methods and to show how to obtain reasonable energy with respect to the 
number of neighbors without extra approximation (long-range correction). 

Section 2 summarizes the methods used in the present work. In Sect. 3, our 
results are compared with those in previous reports. A polyethylene chain and LiH 
chain are used as model polymers. Section 4 shows the influence of the selected 
basis set on the energy convergence behavior with respect to the number of 
neighbors. That  section also shows how the accuracy of the two-electron integrals 
affects the total energy. In Sect. 5, the symmetry breaking problem is discussed. 
Section 6 shows the effect of differences in the unit-cell structure. Section 7 shows 
the convergence behavior of the optimized structure and the vibrational frequen- 
cies of the polymer with respect to the number of neighbors. Section 8 compares the 
CPU time required for the Namur  and the cell-wise cutoff schemes. Conclusions 
based on the results obtained in this study are given in Sect. 9. 

2 Methods of calculation 

The ab initio crystal orbital theory is an extension of the molecular orbital theory 
for infinite systems [14, 15]. In this section, the crystal orbital theory and cutoff 
methods are summarized. 
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2.1 Crystal orbital theory 

In the crystal orbital theory, the total wave function of the polymer is approxi- 
mated by a single Slater determinant built with the one-electron wave function 
(crystal orbital), 0,(r, k). Each crystal orbital is further expanded by linear combi- 
nation with the Bloch basis functions, q~(r, k) such that 

basis 

O,(r,k) = ~', q,O,(k)g)s(r,k). (1) 
s = l  

Here, r is the coordinate of the electron and k is the wave vector, basis denotes 
the number of basis functions, and is equivalent to the number of atomic basis 
functions in the unit cell. 

The Bloch basis functions are represented by the Bloch sum of the atomic 
orbitals in the unit cell: 

+N 

O~(r,k) = 1 / V / ~ + l  Z exp(ikaj))G(r-ja), (2) 
j = - N  

where N = 0% 1 / x / / ~  - + 1 is the normalization constant, and i is the imaginary 
number unit. Zs(r - ja) represents the sth atomic basis functions in thejth cell from 
the central unit cell. The usual Gaussian-type basis functions such as the STO-3G 
or 6-31G basis sets are used for these atomic basis functions. 

The expectation value of the electronic energy per unit cell is expressed as 

Eelec a ~r~/a occupied 

2N + 1 = 2--~ "j_~/a ~. C*(k) 

x {H(k) + F(k)} C,(k) dk. (3) 

The definition of / i t  and F are given in Eqs. (6) and (7). Integration is performed 
within the first Brillouin zone, ( - r t / a  < k <<, 7t/a). Applying the ortho-normality 
condition, 

fO*(r, k)lp,.(r, k) = (4) dr 6,,, 

for Eelec, and performing Ritz's variational method, the secular equations, i.e., the 
Fock equations, are derived as follows: 

e(k)S(k) C(k) = F(k) C(k). (5) 

Fr~(k), H~(k), and S~(k) are represented by Fourier transforms of the matrix 
elements of real space which do not contain k. 

+N 
Fr~(k) = ~ exp(ikaj )Fr°j, (6) 

j = - N  

+N 
Hr,(k) = ~ exp(ikaj )Hr°j, (7) 

j = - N  

+N 
S~(k)= ~, exp(ikaj)S°j. (8) 

j=--N 
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If we define the sth atomic orbital in the j th unit cell from the central cell as 
Xs(r - j a )  = Z~, the matrix element of the overlap integrals is 

s Oj f o i  o ~ Zr Zs dr =- = <1,, lZ~>. (9) 

The matrix element of the core Hamiltonian integrals is 

oj 1 
Hrs = - ~ < z ° l z l l z ~ >  

where R~ represents the Ath atomic coordinate at the hth unit cell. 
Finally, Fock matrix element is 

+ N + N  basis basis 

F ° / = H ° / +  ~ 2 ~, 2 ph2 
h= - N I = - N  t u 
O j  h i  O h  j l  

× {2<zr z,1 - <Zr X, ] Z,Z. >}, (11) Z, Z, ) 

where the two-electron integral is 

O j h l  ff (Zr Zs[ZtZu> = z°(rl)*z~(rl)  

x 1---Zht(r2)z',(r2)* dr1 dr2. (12) 
r 1 2  

All integrals given above are easily obtained using the integral package in 
existing molecular orbital programs, such as the Gaussian or Hondo series. Note 
that the Fock matrix elements are calculated directly in our crystal orbital pro- 
gram. The two-electron integrals are not saved in disk storage but calculated 
repeatedly in each SCF step. This is done because the number of two-electron 
integrals easily exceeds 2 gigabytes, which is the largest file size of a 32-bit 
operating system. 

The total density matrix elements Pta, z,, appearing in the Fock matrix elements, 
are defined as 

pth, I = a ~./a 
occupied 

n o-,~/a ~,, exp{ika(h l)} 

x C*(k)C,,,,(k) dk. (13) 

Integration is performed within the first Brillouin zone ( -  n/a < k <. n/a). 
From these relations, we can write the total energy in the real space indepen- 

dent of the wave vector k: 

Eto ta l  

2 N + l  

1 ~Nb~sba~i~y, (H°J+~,-~'%P°J 
2 j = - N  r s 

atom 

+ 
~ -  ~ R 0 D J t '  

j -  N B A ~ attB[ 

where A # B whenj = 0. ZA is the charge of the atomic nucleus A. The second term 
of the right-hand side is the nuclear repulsion energy, and the first term is the 
electronic energy equivalent to Ee~ec- 
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2.2 Nth neighbor approximation 

Since the equations in the previous sections contain summation to infinity, we can 
not calculate them. For  the first approximation, we terminate the calculations 
when the value of the integrals becomes sufficiently small. The nucleus-electron, 
electron electron, and nucleus-nucleus interactions are electrostatic, and the decay 
is the order of r-~. This means that if we set 10 -s  Hartree as the threshold value, 
we can calculate all the integrals within the area of 10 8 Bohr. This is also impossible 
in practical applications. In addition, it should be noted that some studies pre- 
viously pointed out that the convergence of the exchange terms may also be very 
slow [16], however, we will not treat the exchange problem in the present paper. 

For  the second approximation, we select a proper neighboring cell number 
N and consider only the basis functions within the Nth cell from the central one. All 
other basis functions are neglected. This is called Nth neighbor approximation. It is 
important  in this approximation to select the cutoff method which further restricts 
the matrix elements within N neighbors. 

2.2.1 No cutoff 
No cutoff scheme is simple and straightforward. All summation from - N o  to 
No are considered, where No is a finite number such that summations up to infinity 
are approximated as 

+ N + N + N + No + No + No 

2 2 2 - ~  2 2 Z (15) 
j = - N h = - N I = - N  j=-Noh=-No l=-No 

This was used in earlier ab initio calculations [17], but is not used now. It is now 
used only in semi-empirical calculations such as the CNDO/2 method [18, 19]. 
Because there are no three- or four-center integrals, there is no choice about the 
cutoff scheme in the CNDO/2  method. The total energy convergence with respect 
to No is very slow and some symmetric properties are destroyed. For  example, the 
Coulomb integral, o o ~Zr )~s ] ~ t N z  N } is not neglected but the corresponding density 
matrix element, Pt-~ N ozN - • = Pt ~ , is. We did not use this cutoff method in this study. 

2.2.2 Cell-wise cutoff 
This summation is performed in the following steps. Summation over j :  

+ N No 

Z ---> E (16) 
j= -N  j= -No 

is the same as having no cutoff, however, summations over h and l are restricted 
such that [20] 

No No 

Z E (j >/o), 
+N +N h=-No+jl=-No+j  (17) 
Z 2 ~ No+j No+j 

Z Z (j < o). 
h=-No l=-No 

The difference between the cell indices appearing in the nucleus-electron and 
electron-electron interactions (core-attraction integrals and two-electron integrals) 
arises within ___ No. Thus, the h and l values depend on the j value and are sym- 
metric with respect to b o t h t h e  central cell and the j th  cell. 
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2.2.3 Namur-type cutoff 
The Namur group proposed this cutoffwith long-range correction by the multipole 
expansion technique [11]. The Namur-type cutoff takes the summation for a set of 
cell indices (0, j )  and (h, l) to be symmetric, i.e. 

+ N + N + N No N~ No + h 

Z Z Z -* 2 2 Z (18) 
j = - N h = ~ N I = - N  j = - N a  h = - N o l = - N o + h  

It is characteristic that the summation of 1 exceeds No. In this article, we set No 
equal to No except in the case of the direct comparison of our results with the work 
of Andr6 et al. [11]. 

The defect of this cutoff is a breaking of the translational invariance of the Fock 
matrix elements. This is very serious because the Fock matrix does not become an 
Hermitian matrix. We, therefore, cannot solve the Fock equations in Eq. (5). In this 
article, we simply impose a symmetry on Fock matrix elements, 

F~ ° - j  = Fr°] (forj >7 0) (19) 

as an extra approximation in constructing the k-dependent Fock matrix element 
in Eq. (6). 

2.2.4 Symmetric cutoff 
The above cutoff methods do not completely satisfy the symmetry condition if 
there are symmetrically equivalent bonds in the inter- and intra-cell bonds. For 
example, when calculating the crystal orbitals of trans-polyethylene with a C z H  4 
unit cell, the inter- and intra-cell C-C bonds are equivalent. The cutoff methods 
mentioned in the previous subsections cannot describe in principle the fact that 
these two bonds are equivalent. 

The symmetric cutoff method uses the cutoff radius rcutoff instead of the cell 
number No to avoid the symmetry problem. The matrix element between the basis 
functions separated by more than the length of rcutoff is discarded. There is, 
however, ambiguity as to how to select the cutoff radius. We have proposed the 
modified symmetric cutoff scheme [9] to overcome this ambiguity. In the original 
symmetric cutoff scheme uses the cutoff radius 

R e u t o f f  ----= na, (20) 

whereas the modified symmetric cutoff uses the cutoff radius 

R e u t o f f  = min(R°~ "+ t), (21) 
1 ~ 0  n +  1 wnere KA~ denotes the atomic distance between the Ath atom in the central cell 

and the Bth atom in the (n + 1)th cell. 
Suhai proposed to use different cutoff radii for the different integrals [12]. He 

claimed that the single cutoff radius should not be used to keep the translation 
symmetry and electrical neutrality, however, in the present paper, we attempt to 
use the single cutoff radius only because his calculations on the polyacetylene chain 
showed quite good agreement with our previous calculations. 

2.3 Use of  helical symmetry 

In the following section, we used a combined symmetry operation rather than a 
simple translation to calculate the crystal orbitals of the polyethylene chain. If we 
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t ake  the  screw axis co inc iden t  with the Car tes ian  z-axis, the / ~  and  i 6j basis Y 

funct ions  be long ing  to the  j t h  cell f rom the reference cell can be ob ta ined  by  
ro ta t ing  the  Car tes ian  p~ and  pC orbi tals .  By per forming  these ro ta t ions  on all one- 
and  two-e lec t ron  integrals ,  we are able  to t ake  one CH2 unit  itself as the  unit  cell 
where  the  helical  angle  is 180 °. This  idea  was first imp lemen ted  by  I m a m u r a  for 
ex tended  Hi ickel  ca lcula t ions  1-21]. I t  was then appl ied  to the C N D O / 2  vers ion by 
Fu j i t a  and  I m a m u r a  [22] and  M o r o k u m a  [23, 24], in succession. The  ab initio level 
ca lcula t ions  were finally r epo r t ed  by Blumen and  Merke l  [25]. Very recently, this 
p rocedu re  has been app l i ed  to more  realist ic po lymer  systems [11, 13, 26, 27]. 

2.4 Wave vector sampling 

The  dens i ty  ma t r i x  elements,  Eq. (13), conta in  the integral  with respect  to the  wave 
vec tor  k. This  in teg ra t ion  mus t  be pe r fo rmed  using an a p p r o p r i a t e  numer ica l  
in tegra t ion  rule. In  this paper ,  we use S impson ' s  rule [28] and  the number  of 
sampl ing  po in ts  (half the Br i l louin  zone) is 21 poin ts  for No = 2 - 10, 41 po in ts  
for No = 11-20, 101 po in t s  for No = 21-50, 201 poin ts  for No = 51-100, and  401 
poin ts  for No = 149. These  values can a rb i t ra r i ly  be chosen, as long as they are  no t  
smal ler  t han  No. Smal ler  values,  however,  inevi tably  cause numer ica l  errors.  

3 Cutoff dependence on total energy convergence 

The energy convergence  behav io r  of the polye thylene  chain with the S T O - 3 G  basis 
set is shown in Tab le  1. The  geomet ry  used here is the one op t imized  by Karpfen  
[29]; rcc -- 1.547 ~ ,  rCH = 1.089/~, /_ H C H  = 107.0 °, and  / C C C  = 112.6 . Re- 
sults for the N a m u r  and  cell-wise cutoffs are shown in the table. The  results  for 
symmet r i c  cutoff  are  ident ica l  with those  for cell-wise cutoff  in this case. O u r  results 
for cell-wise cutoff  are a lmos t  ident ical  with those  of Karpfen  and  Beyer  [13], 

Table 1. Energy convergence behavior of polyethylene with the STO-3G basis set. No represents the 
number of neighboring CH2 units. Energy units are shown in a.u. 

No Namur" Cell-wise a Cell-wise b Cell-wise LC b' ° 

2 - 38.576910 - 38.580047 - -  - -  
3 --38.580221 -38.581911 - -  - -  
4 --38.580196 --38.581206 - -  - -  
5 --38.580196 --38.580872 -38.58087 -38.58023 
6 --38.580196 --38.580678 -38.58067 --38.58019 
7 --38.580196 -38.580558 -38.58055 -38.58019 
8 --38.580196 -38.580477 - -  - -  
9 --38.580196 - 38.580421 - -  - -  

10 --38.580196 --38.580380 - -  - -  
20 --38.580196 --38.580244 - -  - -  
50 -38.580196 --38.580204 - -  - -  

100 -38.580196 --38.580198 - -  - -  

" Present work 
b From the work of Karpfen and Beyer [13] 
c Cell-wise with long-range correction 
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Table 2. Energy convergence behavior of helical polyethy- 
lene with the STO-3G basis set. The helical angle is 80 
degrees. No represents the number of neighboring CHz units. 
Energy units are shown in a.u. 

No Namur" Cell-wise with L C  b 

2 --38.585129 - -  
3 - 38.579270 - -  
4 -38.570715 - -  
5 --38.572139 - -  
6 - 38.572116 - -  
8 --38.572111 --38.52115 

10 --38.572111 --38.57208 
12 --38.572110 -38.57213 
14 --38.572109 --38.57213 
20 --38.572109 - -  

"Present work 
b Cell-wise with long-range correction, from the work of 
Karpfen and Beyer [13] 

which are  also shown in Tab le  1 for compar i son .  The  to ta l  energy convergence is 
r e m a r k a b l y  fast a t  the N a m u r  cutoff  level. The  energy converges  at  No = 4 within 
an accuracy  of  10 - 6 a.u. I t  should  be no ted  tha t  the N a m u r  energy converges  faster 
than  the cell-wise energy after long-range  correct ion.  

To conf i rm the above,  we also ca lcu la ted  the energy convergence  in po lye thy-  
lene with a helical  angle  of 80 °, as shown in Table  2. Karpfen  and  Beyer  [13] 
r epor t ed  tha t  the  convergence  was very slow in this conf igura t ion  and  tha t  the 
mul t ipo le  expans ion  a p p r o x i m a t i o n  for long- range  terms de te r io ra ted  be low 
a cri t ical  n u m b e r  of ne ighbors  (No = 8 in this case). The  present  N a m u r  energy 
converges  within 10 -5  a.u. a t  No = 8 and 10 -6  a.u. at  No = 14. The  e r ro r  is only 
3 x 10 .5  a.u. even at  No = 5. N o t e  tha t  the energy values for No = 2 - 4  are  unreli-  
able, because  one helical  tu rn  is no t  yet  completed.  

Tables  3 and  4 c o m p a r e  the  present  results  with those  of Andr6 et al. I-11] which 
include long- range  cor rec t ion  by  mul t ipo le  expansion.  The  min imal  con t rac t ion  of 
Clement i ' s  (7s3p/4s) basis  set [30] (hereafter referred as (7s3p/4s) basis set) is used 
to calcula te  the  convergence  in the polye thylene  chain,  and  the S T O - 3 G  basis set 
[31] is used for the  l inear  L iH  chain. The  geomet ry  is taken  from the work  of Andr6 
et al. [32]; rcc = 1.54 ~ ,  rcH = 1.09 ~ ,  /_ C C C  = 109.5 °, and  / H C H  = 109.5 ° for 
the polyethylene;  rL~n = 4 a.u. and  ruL~ -- 6 a.u. for the L iH  chain.  

I t  is in teres t ing  to note  tha t  our  po lye thy lene  energy converges  a lit t le faster 
than  tha t  of Andr6  et al. Long- range  cor rec t ion  seems to d is turb  the energy 
convergence  in this case. O n  the other  hand,  the L iH energy with long- range  
cor rec t ion  converges  faster. The  slight difference in the converged energy is t hough t  
to be due to numer ica l  errors.  Because the  L iH  chain  is more  ionic than  the 
po lye thy lene  chain,  mul t ipo le  a p p r o x i m a t i o n  works  well in this case. 

4 Basis set dependence of total energy convergence 

In c o m p a r i n g  Tables  1 and 3, we not iced  tha t  the  energy convergence behav io r  
depends  on the basis set. The  S T O - 3 G  energy converges at  No = 4 bu t  the (7s3p/4s) 
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Table 3. Energy convergence behavior of polyethylene with Clem- 
enti's (7s3p/4s)/[2slp/ls] basis set. Energy units are shown in a.u. 

No N; Namur" Namur with LC b 

5 9 -38.879792 -38.866876 
9 17 -38.879775 -38.879876 

11 21 -38.879775 -38.879806 
11 37 -38.879774 -38.879786 
11 49 -38.879774 -38.879784 
13 49 -38.879774 -38.879775 
17 49 -38.879774 -38.879773 
19 37 -38.879774 -38.879775 
19 49 -38.879774 -38.879773 

a Present work 
b From the work of Andr~ et al.: The Namur cutoff with long-range 
correction by the multipole expansion technique [11] 

319 

Table 4. Energy convergence behavior of an LiH chain with the 
STO-3G basis set. Energy units are shown in a.u. 

No N; Namur a Namur with LC b 

3 5 -7.841428 -7.841404 
5 9 -7.841446 -7.841445 
7 13 -7.841451 -7.841448 
9 17 -7.841453 -7.841449 
9 25 -7.841455 -7.841449 
9 49 -7.841456 -7.841449 
9 99 - 7.841456 -7.841449 

" Present work 
b From the work of Andr6 et aI.: The Namur cutoff with long-range 
correction by the multipole expansion technique [I 1] 

energy does not, even at No = 11 (No = 21). We cont inued  by calculating polyethy- 
lene chains with the (7s3p/4s) basis set and  Huzinaga ' s  MINI-1  basis set. The 
results are shown in Table  5. The geometry is the same as that  adopted in the 
previous section for the (7s3p/4s) basis set. 

It  is clear from Table  5 that  the convergence of cell-wise cutoff is greatly 
improved with these two basis sets. The N a m u r  energy converges slower than  that  
of STO-3G.  As a result, the difference between the N a m u r  and cell-wise cutoffs 
becomes negligible, a l though the N a m u r  energy converges a little bit  faster. Both 
converge at No = 9 within 10-  5 a.u. Table  5 shows that  the MINI-1  basis set gives 
the in termedia te  behavior  between the S T O - 3 G  and  (7s3p/4s) results. 10-5 a.u. 
accuracy is achieved at No = 6 for the N a m u r  cutoff and  No = 9 for cell-wise cutoff. 

The energy convergence dependence on the basis set is related to the diffusivity 
of the spatial  d i s t r ibu t ion  of the basis set. The most  diffused basis set (7s3p/4s) is 
relatively insensit ive to the cutoff method,  however, sufficient convergence is never 
ob ta ined  for the most  compact  basis set S T O - 3 G  without  the N a m u r  cutoff. Thus, 
use of the S T O - 3 G  basis set is no t  recommended  in crystal orbital  calculations. 
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Indeed, the serious disagreements among the past computational results for the 
polyacetyene, polyethylene, and other polymers, are now attributed to the use of 
the STO-3G basis set. 

On the other hand, the extended basis sets, such as double-zeta and split- 
valence basis sets, generally have more diffused orbital exponents than the STO-3G 
basis set and are expected to show faster convergence. In our previous work on 
polyacetylene with the modified symmetric cutoff scheme, the 4-31G results indeed 
showed sufficiently faster convergence than that seen in the STO-3G results [-9]. 
Table 6 shows the 3-21G and 4-31G results of the polyethylene calculations in 

Table 5. Energy convergence behavior of polyethylene with Clementi's 7s3p/4s basis set and the 
MINI-1 basis set. Energy units are shown in a.u. 

7s3p/4s MINI-1 

No Namur Cell-wise Namur Cell-wise 

2 -38.862465 -38.860464 -38.736853 -38.735063 
3 -38.880480 -38.880456 -38.752940 -38.752873 
4 -38.879844 -38.879825 -38.752455 --38.752420 
5 -38.879818 -38.879826 -38.752437 --38.752439 
6 -38.879785 -38.879787 -38.752426 -38.752428 
7 -38.879788 -38.879792 -38.752425 -38.752431 
8 -38.819077 --38.819092 -38.752421 --38.752426 
9 -38.879780 -38.879782 -38.752422 --38.752427 

10 -38.879774 -38.879776 -38.752420 -38.752425 
20 -38.879774 --38.879774 -38.752420 -38.752422 
50 -38.879774 --38.879774 -38.752420 -38.752420 

100 -38.879775 -38.879775 -38.752420 -38.752420 

Table 6. Energy convergence behavior of polyethylene with the 3-21G and 4-31G basis sets. NC 
means the SCF step was not converged. Energy units are shown in a.u. 

3-21G 4-31G 

No Namur Cell-wise Namur Cell-wise 

2-4 NC NC NC NC 
5 --38.819140 - 38.819254 NC NC 
6 -38.819113 -38.819122 NC NC 
7 -38.819080 -38.819122 -38.977576 --38.977579 
8 -38.819077 -38.819092 --38.977578 --38.977562 
9 -38.819073 -38.819094 -38.977570 -38.977572 

10 -38.819071 -38.819081 -38.977570 -38.977565 
15 --38.819070 --38.819075 -- 38.977568 - 38.977569 
20 -38.819068 --38.819071 -38.977567 -38.977567 
50 -38.819068 -38.819069 -38.977567 -38.977568 

100 -38.819069 -38.819069 -38.977568 -38.977568 
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Fig. 1. Effect of the two-electron 
integral threshold values on the total 
energy convergence of (a) 

polyethylene with the (7s3p/4s) basis 
set and (b) an LiH chain with the 
STO-3G basis set. Open and closed 
circles correspond to the 10 . 6  and 
10 . 8  threshold values of the two- 
electron integrals 

Number of Neighbors 

Karpfen's geometry [29]. The cell-wise cutoff results show sufficient convergence 
for both basis set levels. 

We would also like to mention the cutoff threshold of the two-electron inte- 
grals. Cutoff means the two-electron integrals below the threshold value are 
discarded in constructing the Fock matrix. In all our previous work, we employed 
10  - 6  a s  the threshold value. We have now found that this threshold value was 
insufficient when including a large number of neighboring interactions. Figure 1 
shows the dependence of the total energy on the threshold value of the two-electron 
integrals. Both cases use the Namur cutoff and in both cases, the 10 -8 threshold 
value is needed to ensure stable convergence. The energy values obtained in the 
calculation with the 10  - 6  threshold value seem to be incorrect in the regions 
including a large number of neighbors. For polyethylene, these are the regions in 
which No > 10 and for the LiH chain, No > 20. 

We feel, therefore, the necessity to reconsider of our previous work [-9] in which 
we calculated convergence in polyacetylene chains with a 10  - 6  threshold value. 
Table 7 compares the STO-3G total energies of trans-polyacetylene with those 
given in our previous work. It is clear that inappropriate selection of the threshold 
value can  cause slow convergence. 
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Table 7. Total energy of all-trans-polyacetyene with 

the STO-3G basis set corresponding to the threshold 
values for the two-electron integrals 10 -8 and 10 -6. 

Energy units are shown in a.u. 

No 10 -8~ 10 -6b 

4 -- 75.954235 -- 75.95423 

6 --75.952046 --75.95204 

8 - 75.950974 - 75.95096 

10 --75.948108 -75.94810 

14 --75.948025 - 75.94801 
18 --75.947989 --75.94796 

22 -75.947971 --75.94792 

26 --75.947961 --75.94789 
30 --75.947954 --75.94786 

40 --75.947946 - 75.94775 

50 --75.947941 - 75.94762 

Present work 
b From Ref. [9] 

5 Symmetry breaking problem 

The Namur cutoff always breaks symmetry and the celt-wise cutoff does not 
always retain symmetry. This symmetry breaking problem typically appears when 
calculating crystal orbitals in polyethylene with a double-size unit cell, that is 
( C z H ~ ) x .  

Table 8 shows the crystal orbital coefficients of polyethylene at the top of the 
valence band. Although the coefficients for two carbon atoms should be the same, 
the Namur results exhibit slight asymmetry. This asymmetry, however, is con- 
sidered to be too small to affect the results. The cell-wise results also shown in 
Table 8 indicate maintained symmetry. 

Table 9 shows the density matrix elements between the 2p~ orbitals (Fig. 2). 
These inter- and intra-cell elements should be the same. The degree of asymmetry is 
highest with cell-wise cutoff, as reported earlier [33], and does not disappear within 
the tenth-neighbor approximation. The Namur cutoff also exhibits asymmetry at 
No = 2, however, it is relatively slight and disappears within five decimal points 
when the number of neighbors is extended beyond 3. The modified symmetric 
cutoff, of course, does not break symmetry. 

One more important effect of the asymmetry is seen in the total energy. 
Table 10 shows the total energy of polyethylene with the STO-3G basis set and 
a double-size unit cell. It is clear that the total energy results for the cell-wise cutoff 
do not agree with those for a single-size unit cell given in Table 1. The No neighbors 
results in Table 10 should agree with the 2No-neighbors results in Table 1. Note, 
however, that agreement arises between the cell-wise results in Table 1 and the 
modified symmetric cutoff results in Table 10. Because the results of the modified 
symmetric and cell-wise cutoff for the C H  2 unit cell is the same, this symmetry 
condition is preserved in the modified symmetric cutoff scheme. The Namur cutoff 
is not expected to satisfy the symmetry condition in principle, however, the total 
energy converges even at No = 4 (Table i). Thus, effect of this asymmetry is 
considered to be negligible when calculating the insulator. We would like to note, 
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Table 8. Crystal orbital coefficients at the top of the valence band of polyethylene with the Namur 
cutoff 

No 2 3 4 5 10 2 a 

C ls -0.00023 0.00004 -0.00001 0.00000 -0.00000 0.00144 
2s 0.00090 -0.00016 0.00003 -0.00001 0.00001 -0.00567 
2px 0.00000 -0.00000 -0.00000 -0.00000 0.00000 0.00000 
2py -0.00167 0.00032 -0.00006 0.00001 -0.00002 0.01244 
2pz -0.65810 0.65811 -0.65810 0.65811 -0.65810 -0.65790 

H ls --0.00095 0.00018 --0.00003 0.00001 -0.00001 0.00650 
H ls -0.00095 0.00018 --0.00003 0.00001 -0.00001 0.00650 
C ls --0.00023 0.00004 --0.00001 0.00000 -0.00000 0.00144 

2s 0.00090 -0.00017 0.00003 -0.00001 0.00001 --0.00567 
2px 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
2py 0.00165 --0.00031 0.00005 -0.00001 0.00002 -0.01244 
2pz 0.65809 --0.65810 0.65810 -0.65809 0.65810 0.65790 

H ls -0.00095 0.00018 -0.00003 0.00001 -0.00001 0.00650 
H ls --0.00095 0.00018 -0.00003 0.00001 -0.00001 0.00650 

Cell-wise cutoff 

Table 9. Density matrix elements between the nearest carbon 2p~ orbitals 

No Namur Cell-wise MSC a 

O 0  O 1  O 0  O 1  O 0  O l  
C1 C2 C 2 - C  1 C 1 - C  2 C 2 - C  1 C 1 - C  2 C 2 - C  1 

2 --0.36024 --0.36026 -0.36259 -0.35876 -0.36077 -0.36077 
3 -0.36025 --0.36025 -0.36134 --0.35957 -0.36049 -0.36049 
4 -0.36025 -0.36025 -0.36088 --0.35987 --0.36039 --0.36039 
5 --0.36026 --0.36026 -0.36066 --0.36011 -0.36034 --0.36034 

10 --0.36034 --0.36034 --0.36043 --0.36026 -0.36034 --0.36034 

a Modified symmetric cutoff 

Intra-cell C2° :: Inter-cell 

C1 o C11 
. . . . . . . . . . . . . . . . . . . . . . . .  , 

Unit cell 

Fig. 2. The 2p~ orbitals defined in Table 9, inter and intra 
denote inter- and intra-cell interactions 

h o w e v e r ,  t h a t  in  s o m e  cases  t h e  s l i gh t  a s y m m e t r y  i n t r o d u c e d  b y  N a m u r  a n d  
ce l l -wise  c u t o f f  m e t h o d s  a r e  n o t  a c c e p t a b l e ,  b e c a u s e  t h e  s y m m e t r y  is exac t .  F o r  
e x a m p l e ,  t h e s e  c u t o f f  m e t h o d s  c a n n o t  c o r r e c t l y  d e s c r i b e  t h e  p o t e n t i a l  e n e r g y  
su r f ace  of  t h e  p o l y a c e t y l e n e  c h a i n  a r o u n d  r l  - r2 = 0, w h e r e  r l  a n d  r2 d e n o t e  t h e  
b o n d  l e n g t h s  o f  t h e  s ing le  a n d  d o u b l e  b o n d s ,  r espec t ive ly ,  [34] .  O n l y  t h e  s y m m e t r i c  
c u t o f f  m e t h o d  will  g ive  c o r r e c t  r e s u l t s  in  s u c h  a case.  
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Table 10. Total energy of polyethylene with a double-size unit cell. Energy 
is given in a.u. 

No Namur Cell-wise MSC ~ 

2 -77.160392 - 7 7 . 1 6 2 0 9 3  -77.162412 
3 - 7 7 . 1 6 0 3 9 3  - 7 7 . 1 6 1 2 3 9  -77.161356 
4 - 7 7 . 1 6 0 3 9 3  - 7 7 . 1 6 0 8 9 9  --77.160954 
5 - 7 7 . 1 6 0 3 9 3  - 7 7 . 1 6 0 7 3 0  --77.160760 

10 - 7 7 . 1 6 0 3 9 3  -77.160484 -77.160488 

a Modified symmetric cutoff 

6 Dependence on unit-cell structure 

There is some ambiguity involved in the selection of the unit-cell structure. 
Figure 3 shows the two types of unit cells of all-trans-polyacetylene with exactly the 
same crystal structure. All previous works employed only Type 1. Computational 
results obtained by the crystal orbital method usually depend on the unit-cell 
structure because the Fock matrix element is first evaluated in real space, as 
described in Section 2. This is a specific problem in Hart ree-Fock crystal orbital 
calculations. In other energy band computational methods using the local-density 
functional approach, summation is usually performed directly in k-space, and there 
is no problem. 

Table 11 shows the total energy of polyacetylene with the STO-3G basis 
set using the two different unit cells. The symmetric cutoff, by definition 
has no dependence, although the total energy convergence is much slower than 
with the other cutoff schemes, all of which exhibit some dependence. The Namur 
cutoff results in the smallest difference, which rapidly decreases with increasing No. 
After summation of 20 neighbors (No = 20), the results are identical, within 
10 .6 a.u. Results for the other two schemes, cell-wise and modified symmetric, 
never become identical in our calculations (No -G< 20). Note that the results for the 
cell-wise and modified symmetric cutoff in the Type 1 structure are the same at 
No = 10 and 20. 

A more significant problem is the difference in the energy band structure. 
Figure 4 shows the energy band structures at No = 3 with Namur and cell-wise 
cutoff. In the Namur scheme, the results for Types 1 and 2 unit-cells are almost the 
same. In the cell-wise scheme, however, the results are significantly different. This is 
attributed to the slow convergence of the oribital eigenvalues in the cell-wise cut off 
scheme, as mentioned in Sect. 6. Fortunately, this difference seems to be only 
a parallel movement of the absolute value, so the shape of the energy band 
structure does not change much. This difference will disappear with an incremental 
increase of No value. 

7 Optimized structure and vibrational frequencies 

The cutoff method selected makes a slight difference in determining the optimized 
geometry for the polymers. Tables 12 and 13 show the optimized geometries of 
trans-polyacetylene with the STO-3G and (7s3p/4s) basis sets, respectively. Optim- 
ization is performed by the energy gradient method, detail of which are already 
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(a) 

H ~ H 

(b) 

H 

C-,,: C:~: 

I I 
H H 

Fig. 3a, b. The two kinds of unit-cell structures of trans-poly- 
acetylene: a Type 1 contains a C=C double bond, b Type 2 
contains a C-C single bond 

Table 11. Total energy ofall-trans-polyacetylene using the Namur, cell-wise, modified symmetric, and symmet- 
ric cutoff methods. Types 1 and 2 represent the type of unit-cell. Energy is shown in a.u. 

No Namur  Cell-wise Modified symmetric Symmetric 

Type I Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 and 2 

2 --75.947852 --75.947440 --75.951134 -75.955765 -75.957108 -75.957461 --75.907321 
3 - 75.947907 --75.947842 --75.949545 --75.951909 --75.956408 -75.953093 -75.916140 
4 - 75.947919 --75.947907 --75.948899 --75.950319 - 75.954201 -75.951270 -75.922185 
5 -75.947291 -75.947919 -75.948573 --75.949515 -75.952885 --75.950323 -75.926393 

10 --75.947922 -75.947923 --75.948099 --75.948351 -75.948099 -75.948824 --75.936199 
20 - 75.947923 --75.947923 --75.947969 -75.948034 --75.947969 -75.948295 -75.941819 

published elsewhere [7, 8], using the threshold value of l0 -4 Hartree/Bohr for 
residual force. 

The N a m u r  and cell-wise geometries almost converge at No = 2 in both basis 
sets. The modified symmetric geometry is incorrect at No = 2 because the C-C  
bond is too long and C = C  bond is too short. These values, however, become 
almost correct at the STO-3G level with No ~> 3 and at the (7s3p/4s) level with 
No >~ 4. On the other hand, the symmetric cutoff results show poor  convergence in 
both geometries and energies. We cannot obtain reasonable geometries for No = 2 
and 3 with the (7s3p/4s) basis set. Even after summation at No = 5, the geometries 
are incorrect. 

Table 14 shows the vibrational frequencies of the polyacetylene chain at the 
STO-3G level. The second derivative is calculated by two-point numerical differ- 
entiation of the first derivatives. The situation is the same for the vibrational 
frequency, as for the optimized geometries: The Namur,  celt-wise, and modified 
symmetric cutoff schemes show reasonable agreement at a small No. The symmet- 
ric cutoff results show relatively slow convergence with respect to the No value, 
reflecting the unsuitable bond lengths mentioned above, i.e., errors in the C - H  
stretching frequencies are too large. Both the optimized geometry and the vibra- 
tional frequency are less sensitive to the cutoff scheme than the total energy is [35]. 
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Fig. 4a, b. The (7s3p/4s) energy band structures of trans-polyacetylene. 
The straight line corresponds to a Type 1 unit cell and the broken 
line corresponds to a Type 2 unit cell. a Namur cutoff and b cell-wise 
cutoff 

8 Comparison of CPU time 

The comparison of the different cutoff methods based on the No is reasonable. 
However, as easily shown from Eqs. (17) and (18), the Namur cutoff requires the 
large number of additional computation of the two electron integrals relative to 
the cell-wise cutoff and it is worthwhile to make a comment from the view of the 
computational efforts. 

In Table 15 compares the CPU time on the IBM RS6000/59H workstation 
required to calculate the polyethylene chain with 4-31G basis set which is corres- 
ponding to the 4-31G part of Table 6. 

As is easily seen from this table, the Namur  No = 9 is found to be comparable to 
cell-wise No = 15 rather than No = 9. In this sense, the Namur cutoffis not always 
superior to the cell-wise cutoff. We would also like to comment about the results of 
No = 7 and 8. In these cases, we can obtain the SCF solution, but after considerable 
extra iterations comparing with No > 8 case. Apparently, this is due to the insuffi- 
cient summation of the exchange contribution to the total energy as the both cutoff 
methods give the same results. The selection of the cutoff scheme does not improve 
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Table 12. STO-3G optimized geometry and total energy of all-trans-polyacetylene with respect to the 
number of neighboring cells. Geometry units are shown in angstroems and degrees. Energy units are 

shown in a.u. 

No 2 3 4 5 

(a) Namur cutoff 

R~--c 1.325 1.326 1.326 1.326 
Rc-c 1.478 1.477 1.477 1.477 
R~H 1.084 1.084 1.084 1.084 
/ ccc 124.0 124.0 124.0 124.0 
/c=cH 119.8 119.8 119.8 119.8 
Total energy -- 75.947868 -- 75.947922 - 75.947933 -- 75.947935 

(b) Cell-wise cutoff 

Rc=c 1.327 1.326 1.326 1,326 
Rc<, 1.475 1.476 1.476 1.477 
Rc-H 1.084 1.084 1.084 1.084 
Lccc 124.2 124.1 124.0 124.1 
Lc-cH 119.5 119.6 119.7 119.7 
Total energy -- 75.951136 - 75.949551 -- 75.948904 - 75.948581 

(c) Modified symmetric cutoff 

R~--c 1.315 1.326 1.326 1.326 
Rc c 1.489 1.473 1.474 1.475 
Rc-H 1.085 1.083 1.083 1.084 
/- ccc 124.1 124.0 123.9 123.9 
/C-CH 121.2 120.1 120.1 120.0 
Total energy -- 75.967567 -- 75.966457 -- 75.954246 -- 75.952922 

(d) Symmetric cutoff 

Rc=c 1.318 1.322 1.324 1.324 
Rc c 1.503 1.495 1.491 1.488 
Rc-H 1.106 1.098 1.096 1.093 
L-coo 126.9 125.8 125.3 125.0 
/-C=CH 118.7 119.3 119.5 119.6 
Total energy -- 75.909496 -- 75.917023 -- 75.922676 -- 75.926695 

the  c o n v e r g e n c y  a n d  t h e  c h o i c e  of  t he  N a m u r - t y p e  cu t o f f  resul ts  in a w a s t e  of  t he  

c o m p u t a t i o n a l  t i m e  in  s u c h  a case.  

9 Concluding remarks 

In  th is  ar t icle ,  we  h a v e  s t u d i e d  t h e  resu l t s  o f  ab initio crys ta l  o rb i t a l  c a l c u l a t i o n s  for  
v a r i o u s  c u t o f f  s c h e m e .  N o  l o n g - r a n g e  c o r r e c t i o n  was  p e r f o r m e d .  W e  h a v e  t h o r -  
o u g h l y  s t u d i e d  t h e  N a m u r  cu to f f  a n d  cel l -wise  cu to f f  s c h e m e s  t h r o u g h  c a l c u l a t i o n s  
of p o l y e t h y l e n e  a n d  L i H  cha ins .  T h e  bas i s - se t  d e p e n d e n c e  of  t he  t o t a l  e n e r g y  
c o n v e r g e n c e  w i t h  r e s p e c t  to  t h e  n u m b e r  of  n e i g h b o r i n g  cells (No) a n d  s o m e  
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Table 13. (7s3p/4s) optimized geometry and total energy of all-trans-polyacetylene with respect to the 
number of neighboring cells. Geometry units are shown in angstroems and degrees. Energy units are 
shown in a.u. 

No 2 3 4 5 

(a) Namur cutoff 

Rc_c 1.388 1.388 1.388 1.388 
Rc_c 1.530 1.529 1.529 1.529 
Rc-H 1.185 1.185 1.185 1.185 
Lccc 122.6 122.6 t22.6 122.6 
Lc=cn 120.1 120.1 120.1 120.1 
Total energy - 76.610083 - 76.610090 - 76.610094 - 76.610095 

(b) Celt-wise cutoff 

Rc=-c 1.390 1.389 1.389 1.389 
Rc c 1.531 1.530 1.529 1.529 
Rc ~ 1.186 1.185 1.185 1.185 
Lccc 123.0 122.8 122.7 122.7 
Lc=cn 119.5 119.7 119.8 119.9 
Total energy - 76.611183 - 76.610682 - 76.610462 - 76.610342 

(c) Modified symmetric cutoff 

Rc=c 1.381 
Rc-c 1.535 
Rc u 1.186 
/- ccc 122.7 
L c---cH 123.0 
Total energy - 76.617874 

(d) Symmetric cutoff 

Rc=_ C 

Rc_ C 

Rc-N 
L CCC 

L C=CH 

Total energy 

t.384 1.389 1.389 
1.534 1.528 1.528 
1.185 1.185 1.185 

122.7 122.5 122.6 
121.9 120.6 120.5 

- 76.614639 - 76.612792 -- 76.612234 

m 

m 

m 

m 

1.390 1.390 
1.551 1.547 
1.203 1.199 

124.8 i24.3 
119.0 i19.3 

- 76.575846 - 76.581670 

p h e n o m e n a  related to differences in the cutoff  schemes were studied. These include 
the symmetry  breaking  problem,  the dependence on the unit-cell structures of the 
calculated results, the opt imized structure, and the v ibra t ional  frequency. The  
results of these studies have led to the fol lowing conclusions. 

The  N a m u r  cutoff  scheme gives the fastest energy convergence with respect 
to No, even wi thout  long- range  correct ions to the total  energy. By applying the 
S T O - 3 G ,  M I N I ,  and (7s4p/3s) basis sets, we have found that  the energy conver-  
gence behav ior  with respect  to No depends on the corre la t ion between the basis 
set and cutoff  scheme. The  N a m u r  cutoff  shows the fastest convergence  with 
the S T O - 3 G  basis set, in te rmedia te  convergence with the M I N I  basis set, and the 
slowest convergence  with the (7s4p/3s) basis set. Cell-wise cutoff  shows exactly 
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Table 14. Vibrational frequency of trans-polyacetylene at the STO-3G level (k = 0). Frequency units are 
shown in cm- 

Cutoff No Vibrational frequencies ~ 

Namur 2 1086 1255 t335 1381 1548 2013 3684 3727 
3 1087 1255 I353 I381 1548 2009 3694 3715 
4 1087 1255 1352 1381 1548 2006 3695 3715 
5 1086 i255 I352 1380 1547 2006 3695 3715 

2 1093 1258 1360 1394 1549 2002 3681 3725 
3 1090 1257 1356 i388 1548 2000 3693 3713 
4 1089 1256 1354 1385 1548 2001 3693 3714 
5 1088 1256 1354 t383 1548 2003 3694 3714 

2 1128 1272 1352 1393 1561 2063 3691 3708 
3 1090 1262 1360 1395 1558 2005 3712 3731 
4 1091 1263 1359 1395 1558 2006 3710 3729 
5 1090 1261 1357 1392 1556 2006 3707 3727 

2 1099 1240 1322 1369 1521 2041 3460 3500 
3 1085 1239 1327 1364 I525 2016 3544 3560 
4 t082 1241 1331 1365 1528 2007 3581 3597 
5 108i I243 1334 1367 153I 2004 3603 3620 

Cell-wise 

Modified 
Symmetric 

Symmetric 

Symmetries and mode assignments from left to right are: Bg C-H deformation out-of-plane. A, C-H 
deformation out-of-plane, A0 C-C stretching, B, C-H deformation in-plane, Ag C-C stretching with 
C-H deformation, A o C-C stretching, Ao C-H stretching, and B, C-H stretching 

Table 15. Total CPU time in seconds on IBM 
RS6000/59H workstation. Numbers in parenthesis are 
the number of SCF cycles required 

No Namur Cell-wise 

7 997.770 (27) 656.740 (29) 
8 834.390 (20) 557.500 (21) 
9 658.740 (14) 428.130 (14) 

10 742.460 (14) 415.950 (12) 
15 902.060 (12) 663.110 (12) 
20 1188.870 (12) 931.100 (12) 
50 3132.250 (12) 2756.630 (12) 

100 7585.720 (12) 6989.780 (12) 

t he  reverse  order .  E v e n  a t  t he  (7s4p/3s) level,  t he  c o n v e r g e n c e  is a l i t t le bi t  fas ter  a n d  
s m o o t h e r  w i th  the  N a m u r  cu to f f  t h a n  wi th  cel l -wise cutoff.  

T h e  N a m u r  c u t o f f  de s t roys  the  t r a n s l a t i o n a l  s y m m e t r y .  Th i s  effect appea r s  as 
a s y m m e t r y  in t h e  c rys ta l  o rb i t a l  coefficients .  B o t h  the  N a m u r  a n d  cel l -wise  cu tof f  
i n t r o d u c e  s l igh t  a s y m m e t r y  on  the  t w o  e q u i v a l e n t  C - C  b o n d s  of  p o l y e t h y l e n e  
w h e n  c a l c u l a t i n g  w i t h  a C 2 H 4  un i t  cell. T h e  a s y m m e t r y  wi th  the  N a m u r  cu to f f  
d i s a p p e a r s  w i t h  i n c r e a s i n g  No, h o w e v e r ,  t h a t  wi th  the  cel l -wise  cu to f f  does  n o t  
d i s a p p e a r  w i t h i n  No ~ 10. 
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Ca lcu la t ions  for the two different unit-cell  s t ructures  of trans-polyacetylene 
show the effects of the cutoff  scheme on the to ta l  energy. On ly  the symmetr ic  cutoff  
results are the same. The  d i sagreement  for the  N a m u r  cu to f fd i sappears  at  No = 20; 
however,  tha t  for the cell-wise and  modif ied  symmetr ic  cutoff  does no t  d i s appea r  
within No ~< 20. Thus,  it  is necessary to choose  the unit  cell carefully when 
c o m p a r i n g  the energy values a m o n g  the isomers.  

The  op t imized  geome t ry  and  v ibra t iona l  frequency are  not  as sensitive to 
the cutoff  m e t h o d  as the  to ta l  energy itself, except  with the  symmetr ic  cutoff. 
The  N a m u r  and  the cell-wise cutoff  schemes give a lmos t  the same values. The  
modi f ied  symmet r i c  cutoff  scheme shows a sl ightly slower convergence with respect  
to No. All three  schemes show reasonab le  agreement  at  No = 5. The  symmetr ic  
cutoff, however ,  does no t  give r easonab le  geomet ry  nor  reasonable  v ibra t iona l  
frequencies. 

All these results  c o m b i n e d  show tha t  the N a m u r  cutoff  is the super ior  cutoff  
scheme, when ca lcu la t ing  the  insu la to r  using the relat ively compac t  min imal  basis 
sets, especial ly the  S T O - 3 G  basis set. A l though  it in t roduces  slight a symmet ry  in 
the mat r ix  elements,  a t t empts  to remove this a symmet ry  result  in the s lower 
convergence  of the  to ta l  energy with respect  to the number  of ne ighbor ing  cells. I t  is 
found, however ,  to be a waste  of t ime to emp loy  the N a m u r  cu tof fwhen  calculat ing 
with the more  ex tended  4-31G basis sets. 

The  next  step of this work  is to i nco rpo ra t e  e lect ron cor re la t ion  into the  
calculat ions.  
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